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Efficient Domain-Independent Experimentation

Yolanda Gil
Information Sciences Institute, USC

4676 Admiralty Way
Marina del Rey, CA 90292

(310) 822-1511
gildisi.edu

Abstract

Planning systems often make the assumption that omniscient world knowledge is
available. Our approach makes the more realistic assumption that the initial knowledge
about the actions is incomplete, and uses experimentation as a learning mechanism
when the missing knowledge causes an execution failure. Previous work on learning by
experimentation has not addressed the issue of how to choose good experiments, and
much research on learning from failure has relied on background knowledge to build
explanations that pinpoint directly the causes of failures. We want to investigate the
potential of a system for efficient learning by expeimentation without such background 0
knowledge. This paper describes domain-independent heuristics that compare possible
hypotheses and choose the ones most likely to cause the failure. These heuristics
extract information solely from the domain operators initially available for planning
(incapable of producing such explanations) and the planner's experiences in interacting
with the environment. Our approach has been implemented in EXPO, a system that
uses PRODIGY as a baseline planner and improves its domain knowledge in several
domains. The empirical results presented show that EXPO's heuristics dramatically
reduce the number of experiments needed to refine incomplete operators.
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1 Introduction 6
Learning from the environment is a vital capability for an autonomous agent. The lack of
knowledge affects the planner's capabilities, and learning requires both detecting a failure
and determining a correction of the knowledge base. Experimentation is a powerful tool for
gathering additional information from the environment that helps determine the appropriate
correction. Previous work on learning from the environment has not addressed the issue
of how to choose good hypotheses for efficient experimentation [Shen, 1989, Hume and
Sammut, 1991]. Others have tried to reduce or eliminate the need for experimentation S
by relying on causal theories or other types of background knowledge to build explanations
for the failures that determine what is to be learned [Rajamoney, 1988, Kedar et al., 1991,
Hammond, 1986]. Learning only seems feasible when detailed knowledge of the domain at
hand is available. The central issue of the acquisition and refinement of additional and
necessarily complex background knowledge is still far from resolved. While explanations
are powerful, it is not realistic to assume that they are always available to planners in any
task domain and with enough detail to explain any possible failure. Our work was inspired
by observation of human behavior upon failed expectations in absence of adequate domain
understanding. For example, if we are presented with a new pen and we fail to write with
it, we would most probably try to vary the writing action and try to make it work. We
might tilt the point a little. We might try writing on a different type of paper. We might
try to press harder. These small variations are what we call experiments, perhaps of a more
mundane nature than those performed in a laboratory but nevertheless greatly responsible
for our autonomy and adaptability. Do we reason about friction between felt tips and types
of paper? Do we have knowledge about how ink flows through a cartridge? Humans learn 0
through these experiments in many domains. Do we all have theories about everything in
the world that we interact with? More importantly, are these theories necessary for building
systems able to learn autonomously from the world? The work in this paper suggests that
they are not. We claim that efficient experimentation is possible without any theory that
supports our actions and explains our failures.

This paper presents an efficient experimentation strategy that does not have access to a
theory that produces explanations for failures. Our approach is to use domain-independent
heuristics that extract information solely from the domain operators initially available for
planning and the planner's experiences in interacting with the environment. The paper also
shows the performance of these heuristics in their implementation in EXPO, a learning by
experimentation capability within the PRODIGY system [Carbonell et al., 19901 that improves
the planner's knowledge in several domains. We begin with a brief description of our previous
work.

2 Learning by Experimentation

Suppose that a planner is given a process planning domain with the incomplete operator
shown in Figure 1. This operator models the process of grinding a metallic surface. A
grinder holds a part with some holding device, and, using a grinding wheel as a tool, it
changes the size of the part along a selected dimension. This operator may seem correct.

• • • •• • •
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(GRIND-INCOMPLETE X,
(preconditions

(and
(is-a <machine> GRINDER) 4
(is-a <tool> GRINDING-WHEEL)
(is-a <part> PART)
(holding-tool <machine> <tool>)
(side-up-for-machining <din> <side>)
(holding <machine> <device> <part> <side>)))

(effects (
(add (surface-finish <part> <side> SMOOTH))
(add (size-of <part> <dim> <value>)))))

Figure 1: An incomplete model of grinding. Notice that, upon an execution failure, a great

deal of background information would have been needed to explain that the presence of
cuttina fluid is important for grinding.

but it is incomplete. For example, it is missing a precondition that states that the grinder
must have cutting fluid. Any plans that use this operator for grinding will not be useful for
grinding parts in the real world. These plans will include steps that set up the tool and the
part correctly in the machine, but will not provide the grinder with cutting fluid. Grinding
is an abrasive operation that generates heat as a result of the friction between the tool and
the part. Cutting fluids cool both the cutting edges of the tool and the part, aid in chip 1 *
clearance, and improve the surface finish. If no cutting fluid if present to absorb the heat,
then the grinding process will not produce the desired size (the grinder and the part will
overheat instead.) The focus of our research is to design learning systems that would correct
the operator's preconditions and effects.

EXPO learns new preconditions through the Operator Refinement Method [Carbonell
and Gil, 1990], that we summarize here briefly. Suppose that the system has build a plan
to grind a part to make its length smaller. Before grinding the part, the system checks
that the preconditions are true in the external world. After grinding it, the postcondition
of GRIND is checked in the external state. The size of the part has changed to be of size
k, but the surface finish is not as it was expected. This may be because the known effect
that specifies the new surface finish is wrong, or because the operator is missing a necessary
precondition. This method addresses the failure by considering the latter possibility as the
working hypothesis first (see [Gil, 1992] for a discussion on the first possibility): that some
unknown precondition is not true in the state and thus the grinding action is not working as
the given operator specifies. To find out what the missing precondition is, EXPO considers
conditions that were true in an earlier successful application of the operator that are not true
now. To do so, EXPO retrieves the description of the past state when the action execution
succeeded before, which contains all the facts that the planner believed to be true of the world
at that point in time. Among the things that were true in that state, which may be many, is
the fact that the grinder had fluid when the operation worked in the past'. Experimentation

'For a discussion on the case when the missing condition is not present, see [Gil, 19921.
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heuristic description .

locality of actions objects affected by the action are likely to be
present in the operator's parameters

structural similarity similar operators are likely to have similar preconditions
generalization of experience necessary conditions have been present in all past

successful executions of the action

Table 1: Domain-independent heuristics for suggesting better experiments.

is needed to determine which one of the differences is relevant for this particular failure. The
experiments will point out that the presence of cutting fluid is relevant for grinding, and
EXPO corrects the operator to reflect this fact.

A typical set of hypotheses obtained by EXPO in its process planning domain has 50 to
100 elements. but for simplicity consider the following subset:

(size-of <part> WIDTH 3)
(size-of <part> LENGTH 7)
(size-of <part> HEIGHT 2.5)
(material-of <part> BRASS)
(has-fluid <machine>)
(surface-finish part26 <side> SAWCUT)
(holding drilli vise2 part26 <side>)
(material-of part26 STEEL) 5 0
(is-a drilli DRILL)
(is-a drill-bitl DRILL-BIT)
(material-of part37 COPPER)
(has-hole part37 <side>)

As described in [Gil, 1992], it is important to minimize the number of experiments and
their requirements. For each experiment the planner has to build a plan to set the environ-
ment in a state that satisfies that many predicates. Apart from the planning effort involved.
the execution of those plans raises non-trivial issues. Plan execution may use up valuable re-
sources (including time), produce non-desirable changes in the environment that are hard to
undo, and interfere with the main goals of the system's task. If any information is available
to identify a smaller subset of these candidates as more relevant, the experimentation effort
may be greatly reduced. In particular, if we can devise a way of ranking the candidates from
most relevant to least, then each candidate can be tested individually. EXPO follows this
strategy by ranking the candidate hypotheses heuristically.

3 Domain-independent Heuristics for Efficient Exper-
imentation

EXPO's efficient experimentation is based on heuristics that exploit knowledge about the
planning task to evaluate which predicates in a set of differences are more likely to have

31
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caused the failure. This section briefly describes these heuristics, summarized in Table 1. O
Their implementation in EXPO follows. For more details see [Gil, 1991, Gil, 19921. a

One heuristic is locality of actions. The idea behind it is the following. The fact that 0
there is a steel part lying somewhere else in the machine shop is not likely to affect our
grinding operation. Facts about the machine and tool used and the part being ground are
more likely to be relevant to the failure. This heuristic prefers predicates which contain some
object that appears in the operator's bindings.

Structural similarity takes advantage of the fact a planning domain reflects the regularities 0
of the actions needed to do a task. Consider the set of differences above as possible candidates
for a new precondition of grinding. Many other operators change the size of a part. Many of
them require the use of cutting fluid, which is in fact the relevant condition for this particular
failure. Only some of them have conditions about the material of tLt., part. And none of
them has any conditions about the surface finish of a side of the part. This heuristic prefers 0
predicates that are preconditions of operators that are similar to grinding according to some
metric.

Generalization of experience takes advantage of the fact that the conditions needed for the
action must have been present in all past successful executions of it. In fact, the precondition
expression of an operator can be seen as a concept that represents the states in which the
operator can be executed successfully, as in [Mitchell, 1978, Mitchell et al., 1983, Langley,
1987, Langley et al., In press]. Unlike these systems, EXPO takes the concept that reflects the
LHS of the rule as a heuristic for learning, rather than as the sole basis for it. Thus, we can
bias the generalization language without worrying about excluding the target concept. The
generalization is used as a heuristic to guide the experiments, and it does not represent the * *
precondition expression of the operator (although it is related). A summary of the planner's
past experience of the action's behavior is useful to guide our search for the missing condition.
because it highlights the conditions that were common to all the states when the action was
executed before.

3.1 Implementation

To be able to generalize from experience, EXPO needs to keep track of the execution of
actions. Each execution of an operator is either a success or a failure. A state in which a
successful execution occurs corresponds to a positive instance of the concept, and a state in
which a failure is obtained is a negative instance. EXPO keeps information about action
executions in situations, which are composed of the operator whose action was executed, the
result of the execution (success or failure), the list of bindings for the operator variables, and
the list of predicates believed to be true immediately prior to the operator being executed
(i.e.. the state). The situations are used to maintain the current description of each opera-
tor's preconditions as a version space [Mitchell, 19781. The algorithm is biased to produce
conjunctive descriptions of the concept. This bias is appropriate for this application. The
large majority of the precondition expressions in operators are conjunctions of predicates (or
negations of predicates). This is because actions are easier to express if their effects under
different conditions are described in separate operators. In this sense, even if the system
aims to learn only conjunctive expressions of predicates it would be a great win. In fact.

a

0 0 0 0D 0 0 0 0 0 0



even though PRODIGY allows for a very expressive language in the preconditions, EXPO's
generalization only contains the predicates in the preconditions that are part of the main
conjunct. For example, if the precondition expression of an operator is (and (A B C D (or
E F))), E and F are never included in the generalization.

Version spaces implement the heuristic for selecting hypotheses based on its generalization
of experience as follows. From the set of current candidate hypotheses, only the ones that
appear in S (the ones that are common to all successful situations) and do not appear in G
(since G contains the preconditions, they ,.ppear in the failure state) are selected.

The set of hypotheses selected by the generalization heuristic is then filtered by the local-
ity heuristic. This heuristic selects only the hypotheses that contain constants and variables
that appear in the bindings of the failure situation. This new subset of the hypotheses is
then ranked by the heuristic of structural similarity as we explain now.

All the domain operators are organized by EXPO in a hierarchy using a simple clustering
algorithm [Gil, 1992]. The root node contains all the operators in the hierarchy. For every
node, the operators that are not in any of its children yet are examined to build a child
node. The expression or expressions that appear in a larger number of operators' define the
child node, and the operators that contain them are transferred to it. The algorithm works
its way (town in the tree until a node is reached that contains only one operator or all of
its operators expressions are included in the node. When a new condition or effect for an
operator is learned, the hierarchy is updated by recomputing the children of the node that
contains the operator. Since this clustering algorithm is used as a heuristic, the emphasis is
not so much in the accuracy of the result as long as it reflects to some extent the structural
similarity behind the domain operators.

EXPO considers first the hypotheses that are selected by the three heuristics. Then, it
considers the ones that the structural regularity heuristic rejected, then the ones rejected by
the locality heuristic. Last, EXPO considers the rest of the hypotheses in the initial set.

Determining the missing precondition is done through iterative experimentation with the
ranked list of candidate predicates. In EXPO, this process converges if the missing condition
is an observable and non-inferred predicate that is within a conjunctive expression. If this is
the case. the missing condition is included in the group of candidate hypotheses, and EXPO
eventually encounters it and learns it through experimentation. If this is not the case, then
the missing condition may be something else, e.g., a disjunction of some of those conditions.
a quantified expression over some predicate, or an unobserved fact (see [Gil, 1992] for more
details). EXPO does not learn these types of conditions.

Although the algorithms presented here can be made more sophisticated. we must keep
in mind that they are used to implement heuristics and as such they are not required to be
close to an optimal implementation of the idea behind them. In their simplicity, the results
in the next section show that they are effective for this purpose.

2 in the preconditions, postconditions, or both. In our experience with EXPO's domains, this does not
make a difference in the effectiveness of the structural similarity heuristic.

5I
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4 Results

This section presents EXPO's performance with a robot planning domain in which 20%
and 50% of the operator's preconditions were removed randomly. This means that from
all the preconditions of all the operators a percentage was removed, so any operator can 4'

be missing any number of preconditions. We generated n problems randomly. All of the
n problems were solvable within the time bound that PRODIGY was given. From the set
of n solvable problems, we randomly chose m of them to be the training set. The rest
constituted the test set. Notice that both sets are independent (they do not have any
common instances). Initially, PRODIGY is given the incomplete domain and EXPO starts
running the training problems. For each problem. EXPO obtains a plan from PRODIGY and
tries to execute it in the external environment 3 . EXPO examines any expectation failurt -

and applies the Operator Refinement Method together with the heuristics described in this
paper for designing experiments. After the experiments determine the cause of the failure.
EXPO corrects the operator and uses it for future plans.

Figures 2 and 3 present the number of experiments that are required to recover from the
failures encountered bv EXPO. The horizontal axis represents subsequent failures encoun-
tered by EXPO. The vertical axis shows the cumulative number of experiments needed until
the missing condition is isolated. We show results with different combinations of the heuris-
tics. We also plot the number of experiments needed when no heuristics are used. in which
case EXPO tries in sequence the candidate predicates. The heuristics used are represented
by a letter: g for generalization, s for structural similarity, and I for locality. A strategy
that does less experiments in the absence of information is represented in the graph as DC. ,
DC uses a divide-and-conquer strategy: it recursively splits the candidate set, using log(n)
experiments to isolate the correct hypothesis (n is the number of hypotheses).

Without any of the hypothesis-selection heuristics many experiments are needed, since
the candidate hypotheses are tried one by one. Although DC does a smaller number of
experiments than some of the heuristics used in isolation, we show below that there are other
reasons why it is inefficient. The other curves show how effe-tive each heuristic is individually
and 'In combination with others. Each heuristic contributes in its own way to reduc>ng the
number of experiments. For 20% incompleteness, the three heuristics combined yield the
best results. For 50% incompleteness, gl is about as good as gls. This is because when the
operators are very incomplete 'milar operators may be missing the same conditions, so s is
not very helpful. The effectiveniess of s improves as new knowledge is added to the domain.

As we mentioned above, even though DCneeds few experiments, the planner must achieve
n - 1 additional goals for each failure (see [Gil, 1992] for more details). With 20% of
the preconditions missing, the number of additional goals that are necessary to achieve for
experimentation is as follows:

Ffailure gls g I s none bD7

5 10 168 -50 9 1 215 : 311
10 17 172 90 110 332 652

3 EXPO was not tested interacting with a physical environment. but with a software system that simulates
one. The details of this simulation are described in [(ill. 19921.

• • • •• • •
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Figure 2: Given a domain missing 20% of its preconditions number of experiments that are *
necessary with all the combinations of the three hypotheses-selection heuristics: generaliza-
tion of experience (g), locality (1), and structural similarity (s). The number of experiments
needed is greatly reduced when the three of them are used. DC represents a divide-and-
conquer strategy that does not use the heuristics.

Failure indicates the order of the failure in the sequence in which they are obtained. With

50% of the preconditions missing:

failure gs q I I s none DC]

5 40 172 27 118 205 377 0
10 71 276 102 177 460 691
17 89 _370 201 :325 728 1217

In summary, the combination of the three heuristics (generalization of experience, struc-
tural sim;!arity, and locality) redduces dramatically the number of experiments required. and 0
yields the best pw.rformance. A divide and conquer strategy over the set of candidates requires
more experiments that also have much more complex sceups.
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Figure 3: Given a domain missing 50% of its preconditions number of experiments that are
necessary with all the combinations of the three hypotheses-selection heuristics: generaliza-
tion of experience (g), locality (1), and structural similarity (s). The number of experiments
needed is greatly reduced when the three of them are used. DC represents a divide-and-
conquer strategy that does not use the heuristics.

5 Conclusion

The work presented in this paper shows that it is possible for a planner to recover fromknowledge-level impasses autonomously without need of causal explanations. Our approach
uses domain-independent heuristics for choosing good experiments that do not require any
knowledge other than the operators defined for planning and the planner's experiences in
interacting with the environment. EXPO's performance using all the heuristics combined
shows that our methotd for experimentation is efficient. Additional domain-independent
heuristics would improve this approach. The structural similarity heuristic can be extended
to exploit other rc'•glarilit's in lie d,)aii inclII(ling inve(rse relations between operators.
The knowledge intensi •e explanation- based methods would still ontperformn ot r systemi. but
the problem of ic(Iirii ii that additional knowledge remains. It would be interesting to
combine the strengths of both approaches, relying on background domain knowledge when

• • •• Q Q• •



it exists and falling back on our heuristics otherwise.
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